Monday, March 9, 2020
The heat energy produced by propanol Essay Example
The heat energy produced by propanol Essay Example The heat energy produced by propanol Paper The heat energy produced by propanol Paper The energy released by a fuel depends on two things. Firstly the number of bonds to be broken and made and secondly the type of bonds involved. Therefore from the preliminary work I can see that propanol has similar type bonds to ethanol, but it has more of them. This means that proponal will use more energy to break the bonds and; therefore more energy will be released to make more new bonds. Also, the greater the surface area and the greater the force of attraction between the molecules, will make it harder to vaporise. Therefore more energy will be released. Fair Test I would like to gain the most reliable results possible using the equipment and conditions provided; therefore I will have to consider certain factors, which if I do not control, may enforce my results to become less reliable. I will, * Keep a constant water temperature at the beginning. * Keep the distance of the copper can away from the flame at 5cm. * Have a constant water mass. * Keep the temperature from which the experiment is terminated fairly constant. * Stir the water with the thermometer before each temperature reading, which will distribute the heat evenly. Results Fuel Mass of Fuel Used Average Ethanol Analysis I will use the averages for ethanol and propanol to work out the total energy transfer and then I will use this to find the mass of fuel burnt per mole. The workings below show what I found out and what this suggests. Ethanol Q = M x C x t The letter Q is the energy in joules and what I want to find out, M is the volume of water in the copper can, C is the specific heat capacity of water and At is the rise in temperature during the experiment. All of these were kept the same throughout the experiment; therefore, M = 100cm3 C = 4. 2 t = 200C This gives the equation,Heat produced. The mass of ethanol burnt is 1. 4g and the relative molecular mass is 46, which I have already worked out previously. In order to work out the number of moles in 8400KJ I will use the equation, Number of Moles = mass/Relative Molar Mass If I put these numbers into the equation to give, Moles of ethanol burnt = 1. 4g/46 = 0. 03 moles. I will then use this to calculate the energy in one mole, 8400/0. 03 = 280000J = -280KJ Propanol I will use the same equation using the same numbers as before as they were kept the same in this experiment as well. This should give,Heat ProducedThe mass of propanol burnt is 1g and the relative molecular mass of propanol is 60, which I again worked out beforehand in my plan. I will use the equation, Number of Moles = mass/Relative Molar Mass I will put the numbers in the equation appropriately to give, Moles of propanol burnt The above figure can be used to work out the energy in one mole0KJ I did not use 0. 4 for the propanol average, because it does not follow the general trend; therefore it is anomalous. If I had included this result it may have affected my results slightly. The results that I obtained clearly show that the propanol did have the greatest energy loss; therefore my prediction was correct and theoretically my preliminary work was very successful in helping me gain the correct prediction. This is shown whereby for ethanol the energy give out per mole is -280KJ, whereas propanol gives out a slightly bigger -420KJ. From this experiment I have learnt that if there are too many carbon atoms present in a fuel then the energy given out as heat through combustion is increased, whereas if there are too few carbon atoms then the energy given out as heat from combustion decreases. If I compare my results with my preliminary work there is an immense difference in figures, whereby for ethanol the energy produced from one mole using the scientific figures is -1031KJ, whereas my results show that there is -420KJ of energy released. Also the scientific results for propanol are -2076, whereas my results show that for proponal -420KJ of energy was released. This significant difference was probably due to the extreme mass of heat loss during the experiment from the copper can, the spirit burner and the water; therefore less heat was transferred to energy. Also average bond energies shown in the data book were taken at 250C, whereas I took my results at a temperature of 200C, which means that a higher temperature the molecules would have had more energy as the bigger the temperature the faster the reaction; therefore more energy would have been transferred as heat after the breaking and making of the bonds. Evaluation I think that my experiment was fairly successful considering the limited equipment and conditions, as I managed to gain a set of fairly reliable results in order to draw a firm conclusion. There was only one anomalous result, which happened when testing the propanol whereby there was a result of 0. 4; therefore I did not include this in my average taking. This could have occurred for a number of reasons these are, The amount of water put into the can may not have been measured completely accurately because of the way the level of the water is seen in the measuring cylinder.Ã There may have not been a totally consistent height above the spirit burner. The spirit burner was not covered up during experiment; therefore the fuel could have evaporated. The length of the wick varied.Ã Heat could have escaped out of the sides of the spirit burner during combustion.Ã The copper can meant that it absorbed and transferred heat well but it lost heat to the air as well. These reasons could have had an slight effect on my results overall, whereby it will have made my results lower than the theretical results, as shown in my analysis. If I were to do this experiment again I would, Weigh the water in the copper can using burette instead of a measuring cylinder. Measure the distance between the can and the sprit burner between each fuel burnt.Ã Cut the wick to the same length after each fuel is burnt.Ã Insulate the copper can at the sides. User a Bomb Calorimeter so that draughts can be prevented and so that there is restrictions to the heat lost. The diagram below shows what the bond calorimeter would look like and how it would be set up. I think that despite the problems that occurred I still managed to gain a fairly reliable set of results in order to imply whether the energy loss for ethanol or propanol was bigger. If I were to experiment further I could experiment with a much wider range of fuels to see whether their energy loss is bigger then propanol. Also I could investigate other factors that affect the energy loss from combustion, such as, the length of the wick, the heat source and the heat capacity. In doing this I can broaden my understanding in this section of chemistry. Show preview only The above preview is unformatted text This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.
Subscribe to:
Posts (Atom)